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Abstract—In this paper, I explore the use of the random forest 

machine learning model for detecting fraudulent credit card 

transactions. I first provide a brief overview of the concepts needed 

to understand the random forest algorithm. I then describe how a 

random forest model can be trained on historical data to identify 

patterns in the data that are associated with fraudulent transactions. 

Finally, I present Python code that demonstrates implementation of 

the random forest model to make predictions on fraudulent 

transactions and evaluating its performance in comparison to a 

single decision tree model. 
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I.   INTRODUCTION 

Credit card fraud is a major problem for credit card 

companies and their customers. It is estimated that as of 2018, 

payment card fraud costs the worldwide economy $24.26 

billion dollars (Nikolina Cveticanin, 2022), and it can cause 

significant financial losses and inconvenience for individuals 

who are victims of fraud. As such, there is a strong demand for 

effective methods for detecting and preventing credit card 

fraud. 

One approach that has shown promise for detecting credit 

card fraud is the use of machine learning algorithms. Machine 

learning algorithms are a type of artificial intelligence that can 

be trained to make predictions or take actions based on data. 

They are widely used in a variety of fields, including finance, 

healthcare, and marketing. 

The random forest algorithm is a powerful tool for building 

predictive models from large datasets. It is based on the 

concept of decision trees, which are a type of mathematical 

object used in discrete mathematics to represent hierarchical 

data. A decision tree is made up of nodes, which represent 

objects or data, and edges, which represent the connections 

between the nodes. The random forest algorithm combines the 

predictions of multiple decision trees, which are trained on 

different subsets of the data, to produce a more accurate and 

stable prediction than can be obtained from a single decision 

tree. 

In this paper, I provide a brief overview on the core concepts 

of trees and forests in discrete mathematics, machine learning, 

and the random forest algorithm. I then propose the use of a 

random forest machine learning model for detecting fraudulent 

credit cards. By training the model on a dataset of credit card 

transactions, it is possible to demonstrate its ability to 

accurately identify fraudulent transactions and discuss the 

advantages and disadvantages of using the RFA model.  

 

II.  FUNDAMENTAL THEORY 

A. Trees 
In discrete mathematics, a tree is an undirected, connected, 

acyclic graph. This means that a tree is a type of graph that has 

no cycles or loops, and all of its nodes are connected to each 

other in a specific pattern. Trees are commonly used to model 

hierarchical relationships, such as the structure of a computer 

file system or the organization of a family tree. 

The branches of a tree represent the different paths that can 

be taken from one node to another, and the leaves of a tree 

represent the end points of those paths. The study of trees in 

discrete mathematics often involves the use of graph theory 

and recursive algorithms to analyze the structure and properties 

of trees. 

 
Figure 2.1 Example of a tree. 

Source: https://i.stack.imgur.com/UQ2Bk.png 

 

B. Forests 
The concept of forests is closely related to the concept of 

trees. A forest is a collection of trees, where each tree is a 

connected acyclic graph. This means that a forest is a type of 

graph that is made up of multiple disjoint trees, which are not 

connected to each other. 

Figure 2.2 Example of a forest with three trees. 

Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-

2021/Pohon-2020-Bag1.pdf 
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The study of forests in discrete mathematics has many 

practical applications, such as in the analysis of networks and 

social networks. For example, a forest can be used to model the 

structure of a network, where the trees in the forest represent 

the different components of the network, and the connections 

between the trees represent the relationships between the 

components. 

 

C. Machine Learning 
Machine learning is a type of artificial intelligence that 

involves training algorithms to make predictions or take 

actions based on data. It is a powerful tool that is widely used 

in a variety of fields, including finance, healthcare, and 

marketing. At a high level, the machine learning process can be 

broken down into the following steps: 

1. Collect and preprocess data: The first step in developing 

a machine learning model is to collect and clean the 

data that will be used to train the model. This involves 

things like removing missing or irrelevant data, and 

transforming the data into a format that can be easily 

used by the machine learning algorithm. 

2. Choose a model and train it: Once the data is ready, the 

next step is to choose a machine learning algorithm and 

train it on the data. This involves providing the 

algorithm with a set of labelled examples that the 

algorithm can use to learn the relationship between the 

input data and the desired output. For example, if the 

purpose is to train a model to recognize faces, it would 

be necessary to provide the algorithm with a large 

dataset of images of faces, along with the corresponding 

labels (i.e., the name of person on the images). 

3. Evaluate the model: After the model is trained, it is 

important to evaluate its performance to see how well it 

is able to make predictions on new data. This typically 

involves splitting the available data into a training set 

and a test set, and using the training set to train the 

model and the test set to evaluate its performance. 

4. Fine-tune the model and repeat: Once the initial model 

has been trained and evaluated, the next step is to fine-

tune the model to improve its performance. This might 

involve changing the algorithm or the parameters used 

to train the model, or trying different approaches to 

preprocess the data. The process of training, evaluating, 

and fine-tuning the model is typically repeated until the 

desired level of performance is achieved. 

  

D. Decision Trees 
A decision tree is a type of machine learning algorithm that 

is used to make predictions based on data using a structure of 

the aforementioned concept of trees, with a root node at the 

top, branches representing different paths that can be taken 

based on the data, and leaves representing the final prediction 

or decision. For example, if a data scientist is trying to predict 

whether a customer would churn (stop using a product or 

service), a decision tree might look at factors like the 

customer’s age, how long they have been a customer, and how 

often they use the product. 

The decision tree algorithm uses a process of recursive 

partitioning to split the data into smaller and smaller subsets, 

based on the values of the features in the data. At each step in 

the process, the algorithm selects the feature that provides the 

most information about the target variable, and splits the data 

based on the values of that feature. This process continues until 

the data is partitioned into subsets that are "pure" with respect 

to the target variable, or until a stopping criterion is reached. 

Once the decision tree has been trained on the data, it can be 

used to make predictions on new data by following the same 

sequence of splits that were used to train the tree. The decision 

tree algorithm is often used in applications such as 

classification and regression, where it can provide fast and 

accurate predictions based on the data. 

 
Figure 2.3 Example of a binary decision tree. 

Source: https://youtu.be/ZVR2Way4nwQ 

 

A decision tree consists of two types of nodes, that is leaf 

nodes and decision nodes. A leaf node is a terminal node that 

does not have any child nodes. It is used to make a prediction 

for a given input data sample. The prediction is made based on 

the majority class of the training data samples that ended up at 

that leaf node during the model training process. A decision 

node, on the other hand, is a non-terminal node that has one or 

more child nodes. It is used to split the data into smaller 

subsets based on the values of an input attribute. The decision 

to split the data is made based on the entropy (impurity) of the 

current set of data samples. Entropy is a measure of the 

impurity or uncertainty of a set of data samples. It is used to 

determine the "goodness" of a split of the data during the 

training process, where the goal is to create subsets of the data 

that are as pure (homogeneous) as possible. The lower the 

entropy, the more pure the subset of data. Mathematically, 

entropy is defined as: 

 

𝐸(𝑠) = ∑  − 𝑝𝑖 log2(𝑝𝑖) 

𝑐

𝑖=1

 

 

With 𝑝𝑖  being the probability of class 𝑖. The attribute that 

results in the greatest decrease in entropy is chosen as the 

splitting attribute for that node, and the data is split into subsets 

based on the values of that attribute. This process is repeated 

recursively for each child node, until the data at each leaf node 

is pure (i.e., all the samples have the same class label). 
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E. Random Forest Algorithm 
The random forest algorithm is a popular machine learning 

method that is used for classification and regression tasks. It is 

an ensemble method, which means that it combines the 

predictions of multiple individual models to make a final 

prediction. As the name suggests, a random forest is an 

ensemble of decision trees. Each decision tree would make a 

prediction based on certain factors, and the random forest 

would combine the predictions of all of the decision trees to 

make a final prediction. 

 

 
Figure 2.4 Example of a binary decision tree. 

Source: https://youtu.be/v6VJ2RO66Ag 

 

The decision trees in a random forest model are trained on 

different subsets of the data, and each tree makes a prediction 

based on the data that it has seen. The predictions from all of 

the trees are then combined to make a final prediction. This is 

done by taking the majority vote of the predictions, or by 

averaging the predictions together. 

The idea behind using a random forest is that by building 

many decision trees and combining their predictions, the 

random forest can make more accurate predictions than a 

single decision tree. This is because each decision tree is 

trained on a different subset of the data, and the final 

predictions are made by taking the majority vote (for 

classification tasks) or the mean of the individual predictions 

(for regression tasks). This helps to reduce the overfitting of 

the model, which is a common problem with decision trees. 

 

F. Machine Learning Evaluation Metrics 
Machine learning evaluation metrics are measures of the 

performance of a machine learning model. They are used to 

evaluate and compare the performance of different models on a 

given dataset, and help to identify the best model for a given 

task. 

There are many different evaluation metrics for machine 

learning, depending on the type of model and the task at hand. 

For example, for classification tasks, common evaluation 

metrics include accuracy, precision, recall, F1 score, and 

Matthews correlation coefficient (MCC). For regression tasks, 

common evaluation metrics include mean absolute error, 

inequity to the sum of squares. 

Evaluation metrics can be computed using a range of 

techniques, such as cross-validation, holdout validation, and 

bootstrapping. It is important to carefully choose the 

appropriate evaluation metrics and techniques for a given 

machine learning task in order to accurately assess the 

performance of the model. 

 

G. Confusion Matrix 
A confusion matrix is a table that is used to evaluate the 

performance of a classification model. It helps to visualize the 

correct and incorrect predictions made by the model, and 

provides insights into the types of errors that the model is 

making. 

A confusion matrix has four entries: true positives (TP), 

false positives (FP), true negatives (TN), and false negatives 

(FN). True positives are the cases where the model correctly 

predicts the positive class, false positives are the cases where 

the model predicts the positive class but is actually negative, 

true negatives are the cases where the model correctly predicts 

the negative class, and false negatives are the cases where the 

model predicts the negative class but is actually positive. 

 
Figure 2.5 Confusion Matrix. 

Source: https://towardsdatascience.com/understanding-confusion-matrix-

a9ad42dcfd62 

 

 

A confusion matrix can be used to compute a range of 

evaluation metrics for a classification model, such as precision, 

recall, and F1 score. These metrics provide a more detailed and 

informative analysis of the model's performance compared to 

simple metrics such as accuracy. The confusion matrix is an 

essential tool for evaluating and comparing the performance of 

different classification models. 

 

H. Precision, Recall, F1 Score, Accuracy, and MCC 
Precision is a measure of the model's ability to correctly 

predict the positive class. It is calculated as the number of true 

positives (TP) divided by the sum of true positives and false 

positives (FP).  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

A high precision value indicates that the model has a low 

false positive rate, i.e. it rarely predicts the positive class when 

it is actually negative. 

Recall is a measure of the model's ability to detect the 

positive class. It is calculated as the number of true positives 

divided by the sum of true positives and false negatives (FN).  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

A high recall value indicates that the model has a low false 
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negative rate, i.e. it rarely predicts the negative class when it is 

actually positive. 

F1 score is the harmonic mean of precision and recall. It is 

calculated as the product of precision and recall divided by the 

sum of precision and recall.  

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

The F1 score is a balanced metric that takes into account 

both precision and recall, and is often used to compare 

different classification models. 

Accuracy is defined as the ratio of the number of correct 

predictions made by the model to the total number of 

predictions. It is calculated as the number of true positives (TP) 

plus the number of true negatives (TN), divided by the total 

number of predictions made by the model.  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
 

 

Accuracy is a useful metric for evaluating the performance 

of a model, but it can be misleading in some cases. For 

example, in imbalanced classification tasks, where the positive 

and negative classes are not equally represented in the dataset, 

a model can achieve a high accuracy by simply predicting the 

majority class for all examples. 

Matthews correlation coefficient (MCC) is a measure of the 

model's accuracy, taking into account all four entries of the 

confusion matrix. 

  

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

 

MCC ranges from -1 (perfectly incorrect) to 1 (perfectly 

correct), with a value of 0 indicating random guessing. It is 

often used as a performance measure for imbalanced 

classification tasks, where the positive and negative classes are 

not equally represented in the dataset. 

 

III.   ANALYSIS 

A. RFA Model on Classifying Fraudulent Credit Cards 

The implementation of The Random Forest Machine 

Learning Model on detecting credit card frauds has potential to 

provide a high accuracy score. To extract a conclusion, the 

steps taken are provided as the following:  

1. Import the necessary libraries and load the dataset into a 

Pandas dataframe. 

2. Preprocess the data such that the training is conducted 

under valid circumstances. This requires analyzing the 

data for NaN values, duplicates, and outliers and 

dropping them from the dataset.  

3. Split the dataframe into training and test set. With the 

dataset described at Section III.B for example, the 

‘Time’ and ‘Amount’ features are set as the input 

variables (x) and the ‘Class’ feature as the target 

variable (y). 

4. Train the random forest model on the training set. Use a 

large number of estimators (e.g. 100) to improve the 

model’s performance. 

5. Make predictions on the test set using the trained model. 

6. Evaluate the model's performance using a range of 

evaluation metrics, such as precision, recall, and F1 

score. 

7. Use the model to make predictions on new credit card 

transactions and identify fraudulent transactions. 

 

Additional steps that are also implemented in this paper is 

improving the performance of the model by using cross-

validation and tuning the model's hyperparameters, such as 

the maximum depth of the trees and the minimum number of 

samples required to split a node, and using a larger and more 

diverse dataset for training. Also, considering an imbalance 

dataset, the undersampling technique is applied in order to 

handle it. 

 

B. Dataset 

In this paper, I use the sample dataset provided by Machine 

Learning Group ULB on Kaggle [6] that includes the 

transactions made by credit cards in September 2013 by 

European cardholders, containing 30 features (V1 .. V28, Time, 

Amount) and holds only numerical attributes and no null 

values. Features (V1,..,V28) are the features obtained through 

PCA, while ‘Time’ contains the seconds elapsed between each 

transactions and ‘Amount’ denoting the transaction amounts. 

Feature ‘Class’ on the other hand is the response variable as it 

classifies the transactions conducted to be fraudulent (1) or 

non-fraudulent (0). 

The dataset however, is highly imbalanced, as it contains 

284807 transactions with 99.83% being a non-fraud transaction 

whilst only 0.17% are classified as frauds (shown at Section 

IV), therefore introducing the possibility of overfitting 

(prediction model assuming that most transactions have near to 

no frauds). To anticipate, the random undersampling technique 

is implemented to balance out the dataset. Undersampling 

works by reducing the amount of data in the majority class (the 

class with more observations, in this case, non-fraudulent 

transactions) by randomly selecting a subset of data from that 

class. 

 

C. Advantages and Disadvantages 

There are several advantages to using a random forest 

algorithm for detecting credit card fraud. One of the biggest 

advantages is that it can help to reduce overfitting, which is a 

common problem with decision trees. Since each decision tree 

is trained on a different subset of the data, and the final 

predictions are made by combining the predictions of many 

trees, the random forest is less likely to overfit the training data 

compared to a single decision tree. This can help to improve 

the overall performance of the model and make it more robust 

and reliable. 

Another advantage of using a random forest algorithm is that 

it can handle large datasets and a large number of features. 

This is important for credit card fraud detection, because credit 

card transactions can involve a wide range of different 
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variables, such as the amount of the transaction, the location of 

the merchant, the time of day the transaction was made, and so 

on. A random forest algorithm is well suited to working with 

this type of data, and it can help to identify subtle patterns and 

relationships that might not be obvious to a human analyst. 

A third advantage of using a random forest algorithm for 

credit card fraud detection is that it is relatively fast to train and 

make predictions. This is important for real-time applications, 

where it is necessary to quickly identify and prevent fraudulent 

transactions. A random forest algorithm can typically make 

predictions in just a few milliseconds, which is fast enough to 

be used in a production environment. 

Despite these advantages, there are also some limitations to 

using a random forest algorithm for credit card fraud detection. 

One of the main limitations is that it is a black-box model, 

which means that it is difficult to understand how the model is 

making its predictions. This can make it challenging to 

interpret the results of the model, or to identify potential 

improvements. 

Another limitation of using a random forest algorithm is that 

it is sensitive to the quality and quantity of the training data. In 

order for the model to make accurate predictions, it is 

important to have a large and diverse dataset that includes both 

fraudulent and legitimate transactions. If the training data is 

inadequate or biased, the model's performance may be poor. 

Despite these limitations, a random forest algorithm can still 

be a valuable tool for detecting credit card fraud. By carefully 

training and evaluating the model, and by using appropriate 

techniques for preprocessing and fine-tuning the model, it is 

possible to achieve high levels of accuracy and performance. In 

fact, in many cases, a random forest algorithm can outperform 

other machine learning algorithms, as well as traditional 

statistical methods, for detecting credit card fraud. 

  

IV.   IMPLEMENTATION 

The implementation codes in this section is written in 

Python with Jupyter Notebook as it provides the ability to 

interpret cell by cell, easing the debugging process and 

providing the ability to visualize the dynamics of data as it is 

processed. It is a popular tool among data scientist as it allows 

the user to easily combine code, visualizations, and narrative 

text in a single document. Before getting to the 

implementation, it should be noted that the following are the 

specifications while conducting this research. 

 

Hardware: 

• Machine: Dell Inspiron 7300 2n1 

• Processor: Intel 

• RAM: 8 GB 

 

Software: 

• Operating System: Windows 10 64-bit 

• Programming language: Python, Jupyter Notebook 

• Libraries used: Pandas, Scikit-Learn, Seaborn, 

Matplotlib 

 

As proposed on section III, the Random Forest classifying 

algorithm is implemented on a provided transactions dataset. 

The dataset can be downloaded on the link referenced at [6]. 

Below are the details and steps taken regarding the 

application of the RSA machine learning model on the 

previously mentioned datasets. 

 

1. Importing the Dataset and Necessary Library 

 
 
import pandas as pd 
df = pd.read_csv(‘creditcard.csv’) 
 

 

The python library ‘pandas’ is imported as the main library 

to load and hold the dataframe provided by the ‘creditcard.csv’ 

dataset. Further down, more libraries will be included on this 

code base. 

 

2. Scaling and Distribution 

 
 
from sklearn.preprocessing import StandardScaler, 
RobustScaler 
 
sc = StandardScaler() 
rc = RobustScaler() 

 
df['scaled_amount'] = 
rc.fit_transform(df['Amount'].values.reshape(-
1,1)) 
 
df['scaled_time'] = 
rc.fit_transform(df['Time'].values.reshape(-1,1)) 

 
df.drop(['Time','Amount'], axis=1, inplace=True) 

 
scaled_amount = df['scaled_amount'] 
scaled_time = df['scaled_time'] 

 
df.drop(['scaled_amount', 'scaled_time'], axis=1, 
inplace=True) 
 
df.insert(0, 'scaled_amount', scaled_amount) 
 
df.insert(1, 'scaled_time', scaled_time) 
 

 
Before the test and training sets are separated, data needs to 

be ‘cleansed’ and preprocessed. This step initializes the 

preprocessing step by firstly scaling and distributing the range 

of values of the feature ‘Time’ and ‘Amount’. As previously 

described at section III.B, the ‘Time’ and ‘Amount’ features 

are the only input variables that has not been scaled by the 

PCA. Distributing the values of said columns would ensure the 

input features of the model would have a consistent scale. 

To be specific, the RobustScaler procedure imported from 

the Scikit-learn library is applied on the ‘Amount’ feature and 

StandardScaler on the ‘Time’ feature. StandardScaler is a 

method of scaling that transforms the data to have a mean of 0 

and a standard deviation of 1. This is done by subtracting the 
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mean from each value and dividing by the standard deviation. 

StandardScaler is sensitive to outliers, and can be affected by a 

few extreme values in the data. RobustScaler, however, is a 

method of scaling that is less sensitive to outliers. It scales the 

data based on the quantiles of the distribution, rather than the 

mean and standard deviation. This means that it will only be 

affected by the most extreme values in the data, and will not be 

affected by small numbers of outliers. RobustScaler is often 

used when the data contains a significant number of outliers, as 

it can provide more robust and stable scaling than 

StandardScaler. The selection of the type of scaler applied is 

based off of the probability of outliers having a more 

significant impact on the ‘Amount’ feature rather than the 

‘Time’ feature. 

 

3. Examine Fraudulent Transactions 

 
 
print('Non Frauds: ', 
round(df['Class'].value_counts()[0]/len(df) * 
100,2), '% of the dataset') 
 
print('Frauds: ', 
round(df['Class'].value_counts()[1]/len(df) * 
100,2), '% of the dataset') 
 
 
output 
Non Frauds:  99.83 % of the dataset 
Frauds:  0.17 % of the dataset 
 

 
As shown, the dataset is highly imbalanced, with only 

0.17% of the total transactions are fraudulent. If the model is 

trained under this circumstance, it is prone to overfit as the 
model may assume that fraudulent cases are non-existent. 

Consequently, sub-samples need to be taken to balance out the 

dataset, that is taking samples that contains a 50/50 split 

between fraudulent and non-fraudulent cases, and then training 

the model on each of the sub-samples. This is, however, not to 

be confused with the step of separating the dataset into sub-

segments to be applied the decision tree in the Random Forest 

process, rather it is only to balance out the dataset to have a 

more consistent distribution. 

 

4. Balancing the Dataset 

 
 
# Shuffle dataset to implement 
# random undersampling 
df = df.sample(frac=1) 
fraud_df = df.loc[df['Class'] == 1] 
# 492 fraudulent transactions 
non_fraud_df = df.loc[df['Class'] == 0][:492] 
normal_distributed_df = pd.concat([fraud_df, 
non_fraud_df]) 
 
# Shuffle dataframe rows 
random_undersample_df = 
normal_distributed_df.sample(frac=1, 

random_state=42) 
 
 

As previously hinted, the dataset needs to be balanced. This 

sequence prepares the step of taking sub-samples with the 

Random Undersampling technique by applying a normal 

distribution on the dataframe and shuffling the rows. 

 
5. Implement Random Undersampling 

 
 
from sklearn.model_selection import 
train_test_split 
from copy import deepcopy 
 
X = random_undersample_df.drop('Class', axis=1) 
y = random_undersample_df['Class'] 
 
# Split training and test sets 
X_train, X_test, y_train, y_test = 
train_test_split(X, y, test_size=0.2, 
random_state=42) 
 
# Turn to arrays to feed on classifier (Random 
Forest Algorithm) 
X_train = X_train.values 
X_test = X_test.values 
y_train = y_train.values 
y_test = y_test.values 
 
# Save a copy 
X_train2 = deepcopy(X_train) 
X_test2 = deepcopy(X_test) 
y_train2 = deepcopy(y_train) 
y_test2 = deepcopy(y_test) 
 
 

Sub-samples of the dataset are taken using the Random 

Undersampling technique. Undersampling is a method for 

dealing with unbalanced datasets in machine learning, where 

the goal is to balance the class distribution by reducing the 

amount of data in the majority class. This is done by randomly 

selecting a subset of data from the majority class, so that the 

resulting dataset has a more balanced distribution of classes. 

This can help improve the performance of the model on the 

minority class (e.g. fraud cases), as well as reduce the potential 

for overfitting to the majority class (e.g. non-fraud cases). 

However, it's important to note that undersampling can also 

cause information loss, and it may not always be the best 

approach for a given dataset.  

The test and training sets are then separated and converted 

into arrays to feed into the machine learning model. A 

deepcopy of the array is also saved to be used as a performance 

comparison to another classification model later on. 

 

6. Get The Best Hyperparameters for Random 

Forest Classifier 

 
 
from sklearn.model_selection import GridSearchCV 
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from sklearn.ensemble import 
RandomForestClassifier 
 
# Define hyperparameter grid 
param_grid = {'n_estimators': [50, 100, 150], 
'max_depth': [3, 5, 7]} 
 
# Perform grid search with 5-fold cross-validation 
grid_search 
=GridSearchCV(RandomForestClassifier(), 
param_grid, cv=5) 
grid_search.fit(X_train, y_train) 
 
best_params = grid_search.best_params_ 
 

 

In this step, the best hyperparemeter for the model is 

retrieved with cross validation. Hyperparameter tuning is the 

process of choosing the optimal values for the hyperparameters 

of the model. In the case of a random forest model, this 

involves finding the optimal values for parameters such as the 

number of decision trees, the maximum depth of each tree, and 

the minimum number of samples required to split a node. By 

carefully tuning these hyperparameters, it is possible to 

improve the performance of the model. The GridSearchCV 

class is then applied to perform a grid search with 5-fold cross-

validation. This means that the data will be divided into 5 

folds, and the model will be trained and evaluated on each fold. 

The GridSearchCV class will automatically try all 

combinations of hyperparameters, and it will return the 

combination that achieved the best performance on the data. 

 

7. Train the Random Forest Model on the Balanced 

Training Set 
 
 
rf_classifier = 
RandomForestClassifier(**best_params) 
 
rf_classifier.fit(X_train,y_train) 
 
# Predicted Target 
y_pred = rf_classifier.predict(X_test) 
 
 

The Random Forest model is trained under the parameters 

provided before on an already balanced dataset. The prediction 

for the target variables is then made based off of the training. 

 

8. Evaluate the Model’s Performance 

 
 
from sklearn.metrics import 
(accuracy_score,precision_score, 
recall_score,f1_score,matthews_corrcoef) 
 
acc = accuracy_score(y_test,y_pred) 
precision = precision_score(y_test,y_pred) 
recall = recall_score(y_test,y_pred) 
f1 = f1_score(y_test,y_pred) 
mcc =matthews_corrcoef(y_test,y_pred) 

 
print(f"Accuracy: {acc}") 
print(f"Precision: {precision}") 
print(f"Recall: {recall}") 
print(f"F1-Score: {f1}") 
print(f"Matthews correlation coefficient: {mcc}") 
 
 
output 
Accuracy: 0.934010152284264 
Precision: 0.98989898989899 
Recall: 0.8909090909090909 
F1-Score: 0.937799043062201 
Matthews correlation coefficient: 
0.8734119362123363 
 
 

The results of the experiment showed that the random forest 

model was able to accurately identify fraudulent transactions, 

achieving high precision and recall scores on the test set. In 

particular, the model had a precision of 98.98%, a recall of 

89.09% and an accuracy of over 93.40%. This indicates that 

the model was able to correctly identify a large proportion of 

fraudulent transactions, while also maintaining a low false 

positive rate. 

 

9. Compare Performance Scores to a Single 

Decision Tree Classifier Model 
 
 
from sklearn.tree import DecisionTreeClassifier  
  
# Define hyperparameter grid  
tree_params = {"criterion": ["gini", "entropy"],  
"max_depth": list(range(2,4,1)),   
"min_samples_leaf": list(range(5,7,1))}  
  
grid_tree = GridSearchCV(DecisionTreeClassifier(),  
tree_params)  
grid_tree.fit(X_train2, y_train2)  
  
# Get the best parameters for the balanced dataset  
tree_clf = grid_tree.best_estimator_  

  
# Train balanced dataset with Decision Tree Model  
dt_classifier = tree_clf  
dt_classifier.fit(X_train2,y_train2)  
  
# New prediction  
new_y_pred = dt_classifier.predict(X_test2)  
  
# Verdict  
acc = accuracy_score(y_test2,new_y_pred)  
precision = precision_score(y_test2,new_y_pred)  
recall = recall_score(y_test2,new_y_pred)  
f1 = f1_score(y_test2,new_y_pred)  
mcc =matthews_corrcoef(y_test2,new_y_pred)  
  
print(f"Accuracy: {acc}")  
print(f"Precision: {precision}")  
print(f"Recall: {recall}")  
print(f"F1-Score: {f1}")  
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print(f"Matthews correlation coefficient: {mcc}") 
 
 
output 
Accuracy: 0.9137055837563451 
Precision: 1.0 
Recall: 0.8454545454545455 
F1-Score: 0.916256157635468 
Matthews correlation coefficient: 
0.8409846875866674 
 
 

Scoring is also conducted to compare the performance of the 

random forest model to that of a single decision tree. The 

decision tree achieved a higher precision of 100%, but a 

slightly lower recall and accuracy of 84.55% and 91.37% 

respectively, and an F1 score of 91.62%. This suggests that the 

use of an ensemble of decision trees, as in the random forest 

model, can improve the performance of the model and reduce 

overfitting. 

 

10. The Confusion Matrix for Random Forest 

Algorithm 
 
 
from sklearn.metrics import confusion_matrix 
import matplotlib.pyplot as plt 
import seaborn as sns 
 
LABELS = ['Non-Fraud', 'Fraud'] 
confusion_mtx = confusion_matrix(y_test, y_pred) 
plt.figure(figsize=(12, 12)) 
sns.heatmap(confusion_mtx, xticklabels=LABELS, 
yticklabels=LABELS, annot=True, fmt="d"); 
plt.title("Confusion matrix") 
plt.ylabel('True class') 
plt.xlabel('Predicted class') 
plt.show() 
 

 

To further analyze the performance of the Random Forest 

model, the confusion matrix is then plotted to evaluate the 

amount of correct predictions made by predicting based of the 

trained model. 

 

 

 
Figure 4.1 The Resulting Confusion Matrix. 

Source: Personal Document 

 

The confusion matrix above consists of the following: 

• True Negatives (Top-Left Square), is the amount of 

correct classifications of the Non-Fraud class, with 

the model having 98. 

• False Negatives (Top-Right Square), is the amount 

of incorrect classifications of the Non-Fraud class, 

with the model having only 1. 

• False Positives (Bottom-Left Square), is the amount 

of incorrect classifications of the Fraud class, with 

the model having 5. 

• True Positives (Bottom-Right Square), is the 

amount of correct classifications of the Fraud Class, 

with the model having 86. 

 

V.   CONCLUSION 

The implementation of a Random Forest machine learning 

model for detecting fraudulent credit card transactions 

demonstrated promising results. The model was able to 

accurately identify fraudulent transactions with an F1 score of 

0.93, and it outperformed the single decision tree model tested 

in terms of both accuracy and recall. Additionally, the use of 

the Random Forest algorithm allowed for the efficient 

processing of a large dataset, and provided interpretable results 

through the use of feature importance scores. These findings 

suggest that the Random Forest model is a valuable tool for 

detecting fraudulent credit card transactions, and it could be 

further improved through the use of additional data and the 

optimization of hyperparameters. Overall, this study highlights 

the potential of machine learning for detecting fraud and 

protecting consumers from financial loss. In future work, it is 

possible for this model to be implemented in a real-world 

setting and explore its potential for detecting other types of 

fraudulent activity. 
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APPENDIX 

The code implemented at Section IV along with an 

optimized version of the code provided by reference [7] can be 

seen and retrieved on the Author’s github repository: 

https://github.com/AlifioDitya/Credit-Card-Fraud-Detection-

with-Machine-Learning. 
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